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The rapid proliferation of generative AI has raised questions about the competitiveness of lower-parameter, locally tunable, open-
weight models relative to high-parameter, API-guarded, closed-weight models in terms of performance, domain adaptation, cost, and
generalization. Centering under-resourced yet risk-intolerant settings in government, research, and healthcare, we see for-profit
closed-weight models as incompatible with requirements for transparency, privacy, adaptability, and standards of evidence. Yet the
performance penalty in using open-weight models, especially in low-data and low-resource settings, is unclear.

We assess the feasibility of using smaller, open-weight models to replace GPT-4-Turbo in zero-shot, few-shot, and fine-tuned
regimes, assuming access to only a single, low-cost GPU. We assess value-sensitive issues around bias, privacy, and abstention on three
additional tasks relevant to those topics. We find that with relatively low effort, very low absolute monetary cost, and relatively little
data for fine-tuning, small open-weight models can achieve competitive performance in domain-adapted tasks without sacrificing
generality. We then run experiments considering practical issues in bias, privacy, and hallucination risk, finding that open models offer
several benefits over closed models. We intend this work as a case study in understanding the opportunity cost of reproducibility and
transparency over for-profit state-of-the-art zero shot performance, finding this cost to be marginal under realistic settings.
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1 INTRODUCTION

Fig. 1. We compared domain-specific performance, general-purpose usability, and amenability to responsible use of three open language models
with two dominant closed models. We found that fine-tuning open models renders them competitive with few-shot closed models at low cost.

According to a November 2023 report by The Verge, OpenAI’s ChatGPT boasts more than one hundred million weekly
users, two million developers using the API, and more than 80% adoption of among Fortune 500 companies, making it
one of fastest growing services in history [51]. Despite the influence of OpenAI’s flagship language models on the world’s
ways of working and seeking information, scientists know little about them: details of the architecture, parameter counts,
and training data of GPT-3.5-Turbo and GPT-4-Turbo are omitted or glancingly described in the company’s technical
reports [41]. Reaffirming the “values encoded in machine learning research” described by Birhane et al. [8], transparency
has taken a back seat to values that preserve corporate competitive advantage. For many scientists and public interest
practitioners, this lack of transparency is at best concerning, and often a reason to avoid such models in their work
altogether [38, 46]. At the same time, recent research has enabled the use of accessible and inexpensive hardware
to train domain-adapted models. Eight-bit and four-bit quantization allow very large models to run on affordable
commercial-grade GPUs [20, 22]. Quantized low-rank adaptation (qLoRA) [21, 32] allow large models to be customized to
a domain by adding and tuning a modest number of parameters while allowing most pretrained weights to remain fixed.

These technologies could collectively help enable a future for AI that is not wed to the interests of Big Tech
corporations — one that prioritizes transparency, cost-efficiency, and the domain-specific and responsible application of
language technologies, in addition to strong performance. In this work, we intend to provide an empirical, practical
foundation for this approach, which we call "Laboratory-Scale AI." Concretely, we address the following research
questions:
RQ1: Do open models offer domain-specific performance competitive with closed models for tasks of scientific and public

interest? We assess open models against closed models on three tasks selected for their scientific or public interest
value: government records entity resolution [26], climate misinformation fact-checking [23], and clinical dialogue
summarization [5]. We evaluate OpenAI’s GPT-3.5-Turbo and GPT-4-Turbo against three open instruction-tuned models:
Mistral-7b-Instruct-v.01 [33], Falcon-7b-Instruct [2], and LLaMA-2-Chat-7b [59]. Results show GPT-4-Turbo exceeds the
performance of the four other models when using them in a few-shot setting, but GPT-3.5-Turbo and open models are
comparable to GPT-4-Turbo or exceed its performance after fine-tuning for a single dataset epoch. On fact-
checking, fine-tuned Mistral-7b-Instruct achieves accuracy of .75, exceeding the mark of .72 by three-shot GPT-4-Turbo.
RQ2: Are open models cost-competitive with closed models? We find that the cost of running inference on a test dataset
with GPT-4-Turbo is comparable to both fine-tuning and inference using an open model. Cost savings achieved by
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using an open model after fine-tuning are especially notable: on the climate fact-checking test dataset, inference is
almost ten times less costly using an open model (Mistral-7B-Instruct, $.31) than zero-shot GPT-4-Turbo ($2.65).
RQ3: How responsive are small open models to domain-specific fine-tuning data? We evaluate the performance of LLaMA-
2-Chat-7B fine-tuned for clinical dialogue summarization after 0%, 20%, 40%, 60%, 80% and 100% of task training data,
and evaluate the performance of the LLaMA-2-Chat-7B, Falcon-7B-Instruct, and Mistral-7B-Instruct every 500 steps
of the 4,298-sample fact-checking dataset. After 20% of the fine-tuning dataset (240 samples), the summarization model
achieves accuracy of .79 on the test dataset, within .02 of its best. After 2,000 fact-checking samples, Mistral-7B-Instruct
achieves accuracy of .71, comparable to fine-tuned GPT-3.5-Turbo. The results show open models can be adapted
with a small amount of data, without the need for large-scale data collection.
RQ4: Can fine-tuned, domain-specific models provide a general-purpose chat-based interface for end users? Chat-based
language models provide an approachable interface to end users. We investigate whether fine-tuning inhibits the utility
of this interface by comparing the performance of fine-tuned LLaMA-2-Chat-7B models with the base model on tasks
not reflected in the model’s fine-tuning dataset. For example, we measure performance of the fine-tuned fact-checking
model on the entity resolution task. We find that fine-tuned open models exhibit performance comparable to
general-purpose base chat models, and in some cases exceed it: for example, the fact-checking LLaMA-2 improves
to .85 accuracy on entity resolution, from the base model’s .77.
RQ5: Can laboratory-scale language models be used in a responsible manner? We evaluate open and closed models on
three tasks of importance for the ethical application of instruction-tuned language models: question answering under
differentially private fine-tuning, demographic bias in toxic comment classification, and abstention from answering
questions for which insufficient information is available to answer correctly.We find that the performance of openmodels
fine-tuned using a private optimizer approaches non-private fine-tuning, suggesting a better privacy alternative to closed
models; that openmodels exhibit moderate bias that fine-tuning largely fails tomitigate; and that fine-tuning openmodels
can improve their abstention properties: fine-tuned LLaMA-2-7B-Chat achieves an abstention score of .99 (maximum
1.0), exceeding the performance of fine-tuned GPT-3.5-Turbo.While open models exhibit greater bias, they offer
greater privacy affordances than closed models, and in some cases abstain more reliably after fine-tuning.

Our experiments demonstrate that a fine-tuned open model running on inexpensive hardware can exceed the
performance of GPT-4-Turbo at lower cost. In addition to our core empirical contributions, we offer a practical
discussion of the challenges and opportunities of adopting a laboratory-scale approach in the Discussion section.

2 RELATEDWORK

We review the related work on generative language models, with attention to model accessibility and evaluation.
Generative Language Models Generative Pretrained Transformers (GPTs) adopt a modified transformer deep learning
architecture [62], employing decoder layers to generate an output conditioned on the preceding input [52]. GPT language
models [11, 42, 53] are pretrained on the “causal” language modeling objective, taking as input a series of subword
tokens and generating the predicted next token [17]. As a result, GPTs can generate freeform output, responsive to a
user’s input [52]. Early applications of GPTs demonstrated few-shot prompting capabilities: given examples of desired
behavior at inference (rather than in training), the model generates a task-relevant output [11]. More sophisticated
prompting strategies like chain-of-thought also provide explanations of the reasoning process to derive correct answers
[67]. A “zero-shot” setting refers to asking the model to produce correct output with no examples [64].

While remarkably effective for NLP tasks, models that require prompts with examples in context generally serve
as a poor interface for lay users, and can result in unpredictable model behavior [18]. To provide a more naturalistic
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and reliable interface, Ouyang et al. [45] trained GPT models to adhere to the natural language instructions of a human
user, with or without examples. Models like OpenAI’s ChatGPT [42] and Meta’s LLaMA [59] are fine-tuned to engage
in dialogue, producing a “chat” based interface wherein the model and a human user take turns, with the user typically
providing an instruction or request [55]. Such models are typically trained to be safe and helpful to the end user via rein-
forcement learning from human feedback (RLHF) [3], or direct optimization using a language model as the reward model
[54]. Our research studies decoder-only generative language models fine-tuned to follow instructions of human users.
Improving Model Accessibility Most generative language models use billions of trainable parameters to mimic
human language [2, 33, 60]. Training or deploying such models requires vast financial resources, making them difficult
to train and access for researchers and public interest practitioners [6]. However, while pretraining LLMs remains
prohibitively expensive, recent techniques mitigate the difficulties of using models with low-cost hardware. For example,
quantization loads a model in a lower level of precision than used during pretraining [20]. While most generative models
are pretrained in 32-bit or mixed 32/16-bit precision, quantization loads the weights in 8-bit [20], 4-bit [22], or even 2-bit
precision [14, 22], reducing memory demands. Because transformer models achieve much greater speed using GPUs,
the bottleneck for efficiently deploying a model is often the amount of memory (Video-RAM) on the GPU device [21].
However, quantization alone does not permit efficient training on commercial grade hardware [20]. Methods known as
parameter efficient fine-tuning (PEFT) attempt to preserve the general-purpose functionality of a pretrained model while
adapting it for a specific task [24, 74]. Among the most widely used PEFT techniques is low-rank adaptation (LoRA) [32].
LoRA inserts small, trainable weight matrices into a pretrained model, which are fine-tuned while leaving the learned
parameters of the pretrained model unchanged [32], reducing fine-tuning memory costs. LoRA weights also require less
space than a fully fine-tuned model [32]. Saving a fine-tuned LLaMA-2-7B-Chat model would require about 13.5GB of
storage; saving only the LoRA weights — which can later be inserted into the pretrained model — requires only around
260MB [21, 32]. Dettmers et al. [21] introduced qLoRA, a method for allowing trainable LoRA weights to be inserted
into quantized models, allowing relatively large models to be mounted on a small GPU and customized using LoRA [21].
Language Model Benchmarking and Evaluation Language models are typically evaluated on specific tasks intended
to measure performance on a function of interest, such as sentiment analysis or machine translation. Benchmarks for
language models consist of collections of these tasks that assess model ability in a wider domain [16]. For example, the
Massive Multitask Language Understanding (MMLU) benchmark measures scientific and world knowledge acquired
during pretraining [31]. At a higher level, Stanford’s Holistic Evaluation of Language Models (HELM) collects tasks
and benchmarks, and asks human users to competitively evaluate model responses to user inputs [37]. Efforts to
use human preferences to evaluate models in the wild include LMSYS Chatbot Arena, where users interact with two
anonymous language models and vote for a preferred model [77]. Bommasani et al. [10] introduce the FoundationModels
Transparency Index, which scores models on transparency-related metrics such as model availability and training details.
Benchmarking ChatGPT The popularity of ChatGPT has prompted researchers to evalute it against traditional
NLP methods and models. Kocoń et al. [35] evaluate ChatGPT against state-of-the-art NLP models on 25 NLP tasks,
finding that GPT-3.5-Turbo and GPT-4 are outperformed by these models and methods. Thalken et al. [58] show that a
fine-tuned LEGAL-BERT [13] is the best-performing model for classifying legal reasoning, outperforming models like
GPT-4 and LLaMA-2-Chat. Loukas et al. [39] find that fine-tuned sentence transformer models outperform few-shot
GPT-3.5-Turbo and GPT-4 on a financial text classification task. Wang et al. [65] find that a fine-tuned BERT can
outperform ChatGPT on sentiment analysis. We build on prior work in benchmarking by comparing open and closed
models, but differ by focusing on autonomy, transparency, and responsible use as much as performance.
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3 APPROACH

We review the models studied, evaluations employed, and consistent cloud environment used across our experiments.

3.1 Models

The models studied share the following characteristics:

• Causal (Generative) Pretraining Objective: All models share the causal language modeling (next-word prediction)
objective introduced to the transformer architecture by Radford et al. [52].

• Instruction-Following: All models undergo supervised fine-tuning to enable a user to issue instructions in natural
language, and receive a natural language response from the model [45].

• 7-Billion Parameters (OpenModels): The openmodels each have approximately seven billion trainable parameters,
allowing them to be deployed on identical cloud instances. OpenAI has not disclosed parameter counts for GPT-3.5-
Turbo and GPT-4-Turbo, but studies suggest they are much larger than open models [48].

We study only generative, instruction-following models for three reasons. First, this accords with the architecture and
training regimen of the closed, industry-dominant OpenAI models against which we assess open models. Second, both
the closed and open models studied are among the most widely used language models in the world as of this writing,
with Meta’s LLaMA-2 model and Mistral’s Instruct model routinely among the most popular models in the HuggingFace
Transformers Python library. Third, these models provide an approachable natural language interface for users who may
not be skilled in machine learning but would nonetheless benefit from the use of a domain-aligned language model. In
addition to being aligned with our goal of empowering scientists and public interest users, the importance of an accessible
interface is borne out by the success of ChatGPT, which far exceeds the userbase of OpenAI’s own GPT-3 base models
[4]. Finally, studying one group of similar models permits use of consistent infrastructure, allowing us to evaluate cost.

3.1.1 Defining Closed vs. Open Models. We define a closed model as a model which is accessible only via a call to an
API, and the weights and architecture of the model cannot be accessed. An open model is one for which the pretrained
weights and architecture are made available and can be modified and built upon. These models are not necessarily
licensed to permit any use of the model, as such licenses may still prohibit commercialization or use for unethical
purposes as defined by the organization releasing the weights [59, 60]; that is, openmodels are not necessarily fully open
source models. This definition of “open” aligns with that employed by Palmer et al. [46] and Rogers et al. [56], but omits
the requirement that researchers know the data on which the open model was trained, as even in previous definitions,
data requirements come with the caveat that such data need not actually be “available for direct inspection” [46].

3.1.2 Closed Models. We study two closed OpenAI models: GPT-3.5-Turbo and GPT-4-Turbo.

• OpenAI GPT-3.5-Turbo: OpenAI’s cost-efficient and broadly performant model optimized to follow instructions
[42, 43]. A GPT-3.5-Turbo fine-tuned with RLHF and Proximal Policy Optimization is the model available to non-
paying users who access ChatGPT through the online interface rather than the OpenAI API [42]. We used OpenAI’s
default GPT-3.5-Turbo at the time of our experiments, which points to "gpt-3.5-turbo-0613" [43].

• OpenAI GPT-4-Turbo: OpenAI’s state-of-the-art language model, available at greater cost than GPT-3.5-Turbo
[43, 44]. GPT-4-Turbo holds the zero-shot state-of-the-art on numerous NLP tasks as of this writing, and achieves
first place in human evaluations of chat-based models in Chatbot Arena [77]. GPT-4-Turbo handles much longer
text input sequences (128,000 tokens) than GPT-3.5-Turbo, as well as multiple input modalities, such as images [43].
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3.1.3 Open Models. We study the following three open models:

• TII Falcon-7B-Instruct: A generative model pretrained on 1.5 trillion tokens of the RefinedWeb dataset [49],
released under the Apache 2.0 license by the UAE’s Technology Innovation Institute (TII) in April 2023 [2]. TII’s
RefinedWeb dataset consists of filtered web data, and a subset is publicly available [49].

• Meta LLaMA-2-7B-Chat: A generative model pretrained on two trillion tokens of publicly available datasets and
made available under the LLaMA 2 Community License by Meta AI in July 2023 [60]. The Chat model was fine-tuned
for dialogue and underwent RLHF to improve helpfulness and minimize toxic output [60].

• Mistral AI Mistral-7B-Instruct-v0.1: A generative model released under the Apache 2.0 license by Mistral AI in
September 2023 [33]. Mistral-7B-Instruct-v0.1 is trained on an undisclosed quantity of data from the open internet,
and exceeds LLaMA-2-7B-Chat and LLaMA-2-13B-Chat on common benchmarks [33].

3.2 Model Evaluation

We evaluate models in zero-shot, few-shot, and fine-tuned settings.

• Zero-Shot: The model is provided with a bare instruction of the task, and given the data to perform the task.
• Few-Shot: The model is provided with an instruction and examples of how to respond. We use multi-turn formatting
to provide few-shot examples to the model, following the HuggingFace chat template documentation for open
models, and OpenAI’s documentation for closed models. Falcon-7b-Instruct is not fine-tuned with a defined chat
template, and we adhere to the guidance of the model’s developers, including examples in a single user prompt.

• Fine-Tuned: The model is fine-tuned on a task-specific dataset before evaluation on the task’s test dataset. For
consistency, we fine-tune for a single dataset epoch, reporting total examples in train and test datasets. We are
unable to fine-tune GPT-4-Turbo, for which fine-tuning is available only via an experimental program.

3.2.1 Hyperparameters. We employ four-bit quantization [21] in both inference and fine-tuning. We use qLoRA
adapters [21, 32] to fine-tune on domain-specific data, adopting the optimal hyperparameters specified by Dettmers
et al. [21]. Specifically, we use qLoRA to tune linear layers, set LoRA matrix rank to 32, and set LoRA dropout to .05,
which improves performance in models with fewer than 13-billion parameters [21]. We used gradient checkpointing
during fine-tuning to save memory by recomputing activations during the model’s backward pass [12, 15]. We set batch
size to 1 due to memory limitations. We use the default hyperparameters for training GPT-3.5-Turbo, with the exception
of fine-tuning for only one dataset epoch, rather than the OpenAI default of three.

Representative Task Train Samples Validation Samples Test Samples Eval Metrics

Entity Resolution 700 100 200 Accuracy, F1 Score
Climate Fact Checking 4,298 1,842 1,535 Accuracy, Weighted F1

Clinical Dialogue Summarization 1,201 100 400 BLEU [47], BERTScore F1 [76]

Table 1. Representative tasks with total training, validation, and test samples, as well as evaluation metrics.

3.3 Cloud Infrastructure

We use a consistent cloud environment, allowing comparison of the cost and runtime of open vs. closed models. We
defined the environment such that a 7-billion parameter model could be fine-tuned using qLoRA in 4-bit precision
with a 1,024-token context window. We chose this setup because 7-billion parameter models are the lowest entry point
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for the three families of models we study (LLaMA-2-Chat-7B, Falcon-7B-Instruct, and Mistral-7B-Instruct), because
fine-tuning in four-bit precision is competitive with fine-tuning in higher precision [21], and because our tasks (e.g.,
summarization), benefit from a context window of at least 1,000 tokens. Fine-tuning used a $0.32 per hour Google Cloud
Platform (GCP) [9] spot instance with the following characteristics: a 16GB Nvidia T4 GPU; 60GB RAM; a 16vCPU,
8-core processor; and 200GB disk. While cost may vary based on region and provider, we found price was generally
consistent on GCP and other providers such as AWS and Lambda Labs, within about $.05 per hour. Because we expect
that most laboratory-scale AI applications will be fault-tolerant during fine-tuning, we use spot instances, which may
be terminated to support higher paying workloads, but are less costly than on-demand resources.

Model Scenario Entity-Resolution Fact-Checking Med-Summarization
Acc F1 Acc F1 BLEU BERT-F1

GPT-4-Turbo

Zero-Shot 0.93 0.94 0.72 0.72 0.06 0.78
One-Shot 0.93 0.94 0.72 0.70 0.08 0.79
Two-Shot 0.97 0.98 0.67 0.68 0.08 0.80
Three-Shot 0.97 0.97 0.72 0.72 0.08 0.80

GPT-3.5-Turbo

Zero-Shot 0.75 0.78 0.43 0.42 0.05 0.76
One-Shot 0.85 0.87 0.52 0.52 0.07 0.78
Two-Shot 0.79 0.79 0.42 0.40 0.08 0.79
Three-Shot 0.78 0.78 0.52 0.52 0.08 0.79
Fine-Tuned 0.97 0.97 0.73 0.71 0.07 0.85

Mistral-7B-Instruct

Zero-Shot 0.83 0.86 0.62 0.62 0.06 0.77
One-Shot 0.69 0.64 0.62 0.62 0.07 0.79
Two-Shot 0.64 0.58 0.50 0.53 0.07 0.79
Three-Shot 0.82 0.84 0.59 0.61 0.07 0.80
Fine-Tuned 0.97 0.98 0.75 0.74 0.10 0.81

Llama-2-7B-Chat

Zero-Shot 0.68 0.79 0.25 0.11 0.02 0.70
One-Shot 0.60 0.75 0.25 0.11 0.06 0.76
Two-Shot 0.60 0.75 0.24 0.10 0.06 0.78
Three-Shot 0.77 0.80 0.24 0.10 0.06 0.79
Fine-Tuned 0.97 0.98 0.74 0.73 0.08 0.80

Falcon-7B-Instruct

Zero-Shot 0.59 0.75 0.46 0.46 0.07 0.78
One-Shot 0.59 0.73 0.23 0.29 0.04 0.73
Two-Shot 0.60 0.75 0.16 0.13 0.05 0.74
Three-Shot 0.60 0.75 0.16 0.12 0.04 0.74
Fine-Tuned 0.96 0.97 0.73 0.72 0.09 0.78

Table 2. Performance for three open and two closed models on two classification tasks and one text summarization task. GPT-4 outperforms other
models in few-shot settings, but open models are competitive after fine-tuning with modest assumptions.

4 MULTIFACETED EVALUATION OF OPEN VS. CLOSED MODELS

We select a practical, representative sample of tasks, including those that 1) reflect real-world uses of generative
instruction-tuned models (e.g., fact-checking chatbots, like Aos Fatos’ FatimaGPT [25] or Meedan’s Check [40]); and 2) re-
flected consequential work envisioned by other research. For example, Gilardi et al. [28] suggest ChatGPT can be used for
data annotation (we consider specifically entity resolution), and Waisberg et al. [63] explore GPT-4 for triaging patients
via clinical dialogues. We acknowledge it may not be desirable to use an LM in a setting like clinical dialogue summariza-
tion or fact-checking, especially without human supervision, and that our tasks are proxies to real-world applications.

4.1 Representative General Tasks

We study three tasks to compare performance of open vs. closed models, with sample and evaluation metrics in Table 1.

(1) Entity Resolution: We use a custom dataset of public records to evaluate performance on Entity Resolution [26].
Given two pairs of names and addresses, the model determines whether the pairs refer to the same person. One set
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is derived from home deeds in Mecklenburg County, NC; the other comes from voter records. The dataset contains
1,000 records annotated by three humans (Krippendorff’s 𝛼 of 0.88, 95% CI: 0.85, 0.90 [75]).

(2) Fact-Checking: We use the Climate-FEVER dataset [23] to evaluate performance on a fact-checking task. Given
a climate-related claim and an associated piece of evidence, the model answers whether the evidence Supports,
Refutes, or provides insufficient information to support or refute the claim [23]. For predefined training, validation,
and test splits, we use the version of this dataset available at https://huggingface.co/datasets/amandakonet/cl
imate_fever_adopted, used in fine-tuning in-domain climate fact-checking models like a Climate-BERT [66].

(3) Clinical Dialogue Summarization: We use the MTS-Dialog dataset [5] to evaluate models on clinical dialogue
summarization, following prior work [30, 71]. Given a dialogue between doctor and patient, plus the topic (e.g.,medi-
cation history, chief complaint), the model must summarize the dialogue, capturing information relevant to the topic.

A simple postprocessing script removed extra words so model output could be measured against labels for tasks 1-2.
Given “The answer is Supports” for fact-checking, the script removes “The answer is.”

4.2 Performance — Fine-tuned Open Models Can Outperform Closed Models

As shown in Table 2, GPT-4-Turbo outperforms open models in the few-shot setting, and by substantial margins for the
entity resolution and fact-checking tasks. Of the openmodels, onlyMistral-7B-Instruct is competitivewith GPT-3.5-Turbo
in the few-shot setting. Fine-tuning for a single dataset epoch, however, yields open models that are competitive and in
some cases even outperform GPT-4-Turbo and fine-tuned GPT-3.5-Turbo. LLaMA-2-7B-Chat achieves no more than 25%
accuracy on the fact-checking task in any few-shot setting, yet outperforms GPT-4-Turbo after fine-tuning. GPT-4-Turbo
also achieves the best few-shot performance on medical summarization. With fine-tuning, though, Mistral-7B-Instruct
outperforms GPT-4-Turbo few shot, achieving higher BLEU score (but not higher BERT score) than GPT-3.5-Turbo,
while fine-tuned LLaMA-2-7B-Chat and Falcon-7B-Instruct achieve results competitive with few-shot GPT-4-Turbo.

4.3 Cost Analysis — Open Models Are More Affordable

To better understand the financial cost of customizing and using open models versus using closed models out of the
box, we compute the approximate cost of inference and of fine-tuning for the climate fact-checking task. For closed
models, we obtain the number of input tokens in our test dataset using the tiktoken tokenizer for OpenAI models. We
multiply this total by the per-token costs published by OpenAI. We omit the cost of output tokens in this computation,
which we estimate to be less than 1% of the total cost of inference for our tasks. We compute cost for open models
by taking the per-hour price of our cloud instance times the runtime logged to our Weights and Biases [7] account.
Costs reported are consistent with billing by OpenAI and GCP. We also report runtime for open and closed models.

If laboratory-scale AI is feasible, we expect open models to be cost-competitive with closed models, and ideally
more affordable. Table 3 shows that the few-shot cost of GPT-4-Turbo is approximately ten times that of a few-shot
open model or GPT-3.5.-Turbo. The cost of fine-tuning any open model for one dataset epoch and evaluating it once
(“Fine-Tuning” in Table 3), a process which Performance results indicate produces a superior fact-checking model to
GPT-4-Turbo, is lower than the cost of running inference once using GPT-4-Turbo in the one-shot setting. The most
significant savings come when using the model after fine-tuning (“Fine-Tuned” in Table 3). Fine-tuned open models
are much less expensive than GPT-4-Turbo, and more performant than few-shot closed models.

Closed models excel on runtime. Fine-tuned GPT-3.5-Turbo is the fastest option, and ten times faster than openmodels.
Few-shot GPT-4-Turbo requires 1.5 times as long as few-shot GPT-3.5-Turbo, but is three times as fast as open models.
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Model Scenario Input Tokens 1k Token Cost Runtime Hours Cloud Cost Total Cost

GPT4-Turbo

Zero-Shot 260,056 $0.010 0.32 N/A $2.60
One-Shot 385,926 $0.010 0.34 N/A $3.86
Two-Shot 484,166 $0.010 0.31 N/A $4.84
Three-Shot 550,171 $0.010 0.32 N/A $5.50

GPT3.5-Turbo

Zero-Shot 260,056 $0.001 0.20 N/A $0.26
One-Shot 385,926 $0.001 0.23 N/A $0.39
Two-Shot 484,166 $0.001 0.20 N/A $0.48
Three-Shot 550,171 $0.001 0.20 N/A $0.55
Fine-Tuning 260,056 $0.003 1.54 N/A $6.60
Fine-Tuned 260,056 $0.003 0.11 N/A $0.78

Falcon-7B-Instruct

Zero-Shot N/A N/A 0.84 $0.32 $0.27
One-Shot N/A N/A 1.24 $0.32 $0.40
Two-Shot N/A N/A 1.37 $0.32 $0.44
Three-Shot N/A N/A 1.58 $0.32 $0.50
Fine-Tuning N/A N/A 9.95 $0.32 $3.18
Fine-Tuned N/A N/A 0.96 $0.32 $0.31

LLaMA-2-7B-Chat

Zero-Shot N/A N/A 0.91 $0.32 $0.29
One-Shot N/A N/A 1.27 $0.32 $0.41
Two-Shot N/A N/A 1.48 $0.32 $0.47
Three-Shot N/A N/A 1.64 $0.32 $0.53
Fine-Tuning N/A N/A 10.92 $0.32 $3.49
Fine-Tuned N/A N/A 1.08 $0.32 $0.34

Mistral-7B-Instruct

Zero-Shot N/A N/A 0.97 $0.32 $0.31
One-Shot N/A N/A 1.10 $0.32 $0.35
Two-Shot N/A N/A 1.25 $0.32 $0.40
Three-Shot N/A N/A 1.37 $0.32 $0.44
Fine-Tuning N/A N/A 10.90 $0.32 $3.49
Fine-Tuned N/A N/A 0.92 $0.32 $0.29

Table 3. Open models are less costly than GPT-4-Turbo, based on costs computed using fact-checking data. The cost of fine-tuning GPT-3.5-Turbo
includes 727,845 Training Tokens, billed at $0.008 per 1,000.

Our measurements do not include all costs, such as purchasing persistent disk storage, static IPs, and more reliable
cloud instances, but provides an empirically grounded analysis of the cost of entry to locally train and deploy a model.

4.4 Data Responsiveness — Modest Fine-tuning Can Make Open Models Competitive

To understand the amount of data needed to produce a domain-specific open model, we study the performance of
LLaMA-2-7B-Chat checkpoints for clinical dialogue summarization, entity resolution, and climate fact-checking tasks.
We save intermediate model weights at 20%, 40%, 60%, 80%, and 100% of each task-specific training dataset, and assess
the intermediate model on the full test dataset. Moreover, for the climate fact-checking task, which has a larger training
set of 4,298 samples, we save checkpoints every 500 samples, and assess accuracy using these checkpoints on 150 test
samples (approximately 10% of the test dataset). We save these 500-step fact-checking checkpoints for LLaMA-2-7B-Chat;
Mistral-7B-Instruct; Falcon-7B-Instruct; and GPT-3.5-Turbo. Because OpenAI does not allow saving model checkpoints
during fine-tuning, we submit separate fine-tuning jobs for GPT-3.5-Turbo using subsets of the training dataset.
If laboratory-scale AI is feasible, we would expect that massive data-gathering projects would not be needed to produce
a competitive in-domain model. As shown in Figure 2 (left plot), LLaMA-2-Chat-7B achieves BERTScore-F1 of .79 on
clinical dialogue summarization after only 20% of training samples (240 samples), and .97 F1 on entity resolution after only
40% of training samples. Similarly (right plot), Mistral-7B-Instruct trained on climate fact-checking achieves accuracy
of .71 after 2,000 samples, while LLaMA-2-Chat-7B achieves accuracy comparable to fine-tuned GPT-3.5-Turbo after
about 3,500 samples. Fine-tuned laboratory-scale models capable of results comparable to GPT-4-Turbo can be trained
using quantities of data feasible for researchers to gather. Variance among open models reflects base model benchmark
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Fig. 2. Left: Fine-tuning improvements emerge during the first 50% of the training data, only a few hundred training samples in the case ofMedical Summa-
rization and Entity Resolution. Right: Finetuned open models are competitive with finetuned GPT-3.5-Turbo with little data (1,000 fact-checking samples).

performance, with Mistral generally outperforming LLaMA-2, and LLaMA-2 outperforming Falcon [31, 37], suggesting
pretraining disparities (e.g., LLaMA-2 pretraining on a larger dataset than Falcon) carry over during domain adaptation.

4.5 Model Generality — Fine-tuning Does Not Inhibit the Generality of Open Models

While fine-tuning may improve the performance of a chat-based model for a specific task, it is not clear whether this
would compromise the model’s general-purpose utility when a user interacts with it via natural language. To study
whether the model maintains this utility, we evaluate each of the domain-specific (entity resolution, fact-checking, and
clinical dialogue summarization) LLaMA-2-Chat-7B models on the other tasks for which the model was not fine-tuned.
We then compare the domain-specific model’s performance on each task against the general-purpose base LLaMA-2.

Zero-Shot One-Shot Two-Shot Three-Shot
0

0.2
0.4
0.6
0.8
1

A
cc
ur
ac
y

Entity-Resolution

Base Model Fact-Checking Model Med-Summarization Model

Zero-Shot One-Shot Two-Shot Three-Shot
0

0.2
0.4
0.6
0.8
1

A
cc
ur
ac
y

Fact-Checking

Base Model Entity-Resolution Model Med-Summarization Model

Zero-Shot One-Shot Two-Shot Three-Shot
0

0.2
0.4
0.6
0.8
1

BE
RT

-F
1

M
ed-Sum

m
arization

Base Model Fact-Checking Model Entity-Resolution Model

Fig. 3. Models fine-tuned on a task using qLoRA offer strong zero-shot performance on other tasks, often stronger than the base model.
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If the model maintains a general purpose utility, we would expect to see at worst insignificant decreases in the per-
formance of a fine-tuned model when compared with the base model. As illustrated in Figure 3, performance actually in-
creases marginally in most cases when using fine-tuned models on tasks for which they were not fine-tuned. For example,
the fine-tuned fact-checking model exceeds base model performance in the one, two, and three shot settings for the entity
resolution task. This may not mean that low-rank fine-tuning will always improve performance on related tasks, but our
findings suggest that fine-tuning for a specific domain does not degrade the general-purpose utility of an open model.

5 RESPONSIBLE USE OF OPEN MODELS

One of the presumed advantages offered by closed models is the process used to mitigate bias and prevent the closed
model from generating harmful or inaccurate output. We thus evaluate three scenarios related to responsible and trans-
parent model use: question answering under differential privacy (privacy), toxicity classification (bias), and abstention,
referring to a model refusing to confidently answer questions for which it does not have the answer (transparency).

5.1 Differential Privacy — Privately Fine-tuned Open Models Approach Non-Private Performance

Differentially private (DP) deep learning (using a privatized gradient descent optimizer [1]) has been adopted to protect
users and avoid legal risks of sensitive data use [27, 29]. While challenging in the context of language models [50], recent
work [70, 73] demonstrates the potential to train general purpose models using differentially private fine-tuning on sensi-
tive data [72]. We adopt the perspective of a small medical lab with sensitive data, seeking to privately fine-tune an open-
source, general purpose medical model. We use the MedQA [34] task as a proxy for this scenario (included in the Multi-
MedBench [61] benchmark), simplifying it to a binary classification task.We employ private fine-tuning with qLoRA, and
report results at five levels of privacy (𝜖 = 0.5, 1, 5, 20,∞, where lower 𝜖 denotes greater privacy, and 𝜖 = ∞ is non-private).

Scenario Model (finetuned)
Acc. at Privacy Level F1 at Privacy Level

𝜖 = 0.5 𝜖 = 1 𝜖 = 5 𝜖 = 20 𝜖 = ∞ 𝜖 = 0.5 𝜖 = 1 𝜖 = 5 𝜖 = 20 𝜖 = ∞

MedQA-TF
Falcon-7B-Instruct 0.47 0.51 0.52 0.53 0.52 0.35 0.36 0.36 0.36 0.51
Llama-2-7B-Chat 0.19 0.41 0.52 0.52 0.56 0.26 0.46 0.53 0.54 0.55
Mistral-7B-Instruct 0.57 0.58 0.59 0.59 0.65 0.53 0.55 0.56 0.59 0.65

Table 4. Privately tuned models can approach non-private performance at lower levels of privacy.

Table 4 illustrates how challenging MedQA-TF proved for open models, which performed much lower than the state-of-
the-art [61]. However, our results show that private fine-tuning allowed a model like Mistral-7B-Instruct to approach its
non-privately fine-tuned performance at 𝜖=20. Figure 4 demonstrates how different privacy settings used in Mistral-7B-
Instruct impact evaluation loss curves, showing that at lower 𝜖 , models take longer to converge. A challenge of noisy,
privatized updates is that batch size needs to be large, posing issues for lab-scale approaches that use smaller batches.

5.2 Toxicity Bias — Open Models Improve with Fine-Tuning, But Lag Behind Closed Models

We evaluate open and closed models on a subset of CivilComments-WILDS [36], a dataset of real online comments cu-
rated from the Civil Comments platform. Dataset labels describe the toxicity of the comment and whether a demographic
membership is mentioned in the comment. Models must classify whether a comment is toxic, and their classifications
are analyzed through the lens of performance and fairness (whether classifications are incorrect more often for certain
demographic groups). We report 1) accuracy on all comments assessed and 2) worst-group accuracy, which represents the
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Fig. 4. Increasing privacy (by decreasing 𝜖) leads to noisier gradients, delaying convergence; but privately trained open models do learn.

lowest accuracy after segmenting the model’s output by demographic membership and toxicity label (e.g., worst-group
accuracy might refer to accuracy for non-toxic comments and male demographic membership). To ensure a controlled
and interpretable experiment, we limited the demographic groups to Male and Female, such that the measurements cor-
respond to gender bias. We used 800 training, 100 validation, and 200 test samples from the dataset. Training, validation,
and test data were balanced across the four groups (Male Toxic, Male Non-Toxic, Female Toxic, Female Non-Toxic).

As shown in Table 5, closed models outperform open models on this assessment. Fine-tuning improves overall (Mean)
accuracy for Mistral and Falcon, but had no discernable effect for LLaMA-2. Fine-tuning did not increase Worst-Group
accuracy over performance in the few-shot setting for any of the open models. The strongest performing model of the
group was three-shot GPT-4-Turbo, which exceeded other models in both Mean and Worst-Group accuracy. Fine-tuned
GPT-3.5-Turbo matches three-shot GPT-4-Turbo on overall accuracy, but not Worst-Group accuracy. However, the task is
difficult, and three-shot Mistral-7B-Instruct surprisingly outperforms zero-shot GPT-4-Turbo on Worst-Group accuracy.

Scenario GPT-4-Turbo GPT-3.5-Turbo Mistral-7B-Instruct Falcon-7B-Instruct Llama-2-7B-Chat
Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%)

Zero-Shot 0.37 0.63 0.61 0.66 0.1 0.53 0 0.51 0.14 0.52
One-Shot 0.37 0.64 0.59 0.63 0.3 0.49 0.4 0.5 0.1 0.5
Two-Shot 0.63 0.68 0.62 0.64 0.41 0.51 0.49 0.53 0.14 0.52
Three-Shot 0.69 0.71 0.54 0.61 0.5 0.56 0.17 0.5 0.09 0.52
Fine-Tuned - - 0.66 0.71 0.49 0.57 0.15 0.55 0.11 0.48

Table 5. Fine-tuning marginally improves toxicity classification accuracy in open models, but closed models still consistently outperform them.

5.3 Abstention — Fine-tuned Open Models Largely Abstain from Emitting Misinformation

Instruction-tuned language models answer questions based on their parametric knowledge [45] or based on context
provided as part of the prompt by the user [57]. If the model has the necessary information in neither its parametric
knowledge nor the user-provided context, the model should abstain from answering to avoid misinforming a user [68].

We evaluate the ability of open models to abstain by adapting questions from context-dependent scientific knowledge
benchmarks, where some questions are designed to be unanswerable if annotators cannot find the answers based on
the context. We use the full training set from QASPER [19] science question answering dataset to finetune and use the
answerable questions from the test set to assess abstention in the following way: we remove the context completely, such
that the correct answer is to abstain ("Without Context" in Table 7). We use abstention rate to evaluate models’ abstention
performance following previous work [68]. Ideally, the abstention rate should be 1 if we remove the context completely.
In addition to abstention, we evaluate model performance on the full QASPER test set (via F1 score) to assess tradeoffs
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Scenario GPT-4-Turbo GPT-3.5-Turbo Mistral-7B-Instruct Falcon-7B-Instruct Llama-2-7B-Chat
Zero-Shot 0.59 0.54 0.36 0.26 0.11
One-Shot 0.56 0.46 0.33 0.31 0.11
Two-Shot 0.60 0.34 0.37 0.21 0.12
Three-Shot 0.67 0.47 0.41 0.16 0.13
Fine-Tuned - 0.74 0.52 0.45 0.47

Table 6. Fine-tuning significantly improves the performance of open models on the QASPER science question answering dataset, though open models
still lag behind few-shot GPT-4-Turbo and finetuned GPT-3.5-Turbo.

between overall performance and abstention ability (Table 6). We follow the original split of train, validation, and test sets,
resulting in 2,593, 1,005, and 1,451 questions respectively. Table 6 describes task performance on QASPER test set. GPT-
4-Turbo excels in few-shot settings. Fine-tuning significantly improves task performance across models, and fine-tuned
GPT-3.5-Turbo achieves the highest F1 of 0.74, 0.07 higher than GPT-4-Turbo. Fine-tuning improves Mistral-7B-Instruct,
Falcon-7B-Instruct and LLaMA-2-7B-Chat, but performance does not approach GPT-4-Turbo on this challenging task.

Scenario Model Without Context

Zero-Shot

GPT3.5-Turbo 0.93
Falcon-7B-Instruct 0.02
Llama-2-7B-Chat 0.00
Mistral-7B-Instruct 0.70

Fine-Tuned

GPT3.5-Turbo 0.53
Falcon-7B-Instruct 0.65
Llama-2-7B-Chat 0.99
Mistral-7B-Instruct 0.38

Table 7. Without context, models that abstain well in the zero-shot setting (GPT3.5 and Mistral) do not abstain well after finetuning. Models that
abstain poorly in the zero-shot setting (Falcon and Llama) improve after finetuning.

Table 7 describes results for the abstention task ("Without Context" means the model is not provided enough information
to answer the question and should always abstain) using answerable questions from QASPER test set. Surprisingly, with
fine-tuning, abstention performance is reduced for the best question-answering models, suggesting an "overconfidence"
effect: Models that are capable of abstaining in the zero-shot setting (GPT3.5Turbo at 0.93 and Mistral-7B-Instruct 0.70)
are less likely to abstain in the fine-tuned setting (GPT3.5Turbo at 0.53 and Mistral-7B-Instruct 0.38). However, for
models that are unable to abstain in the zero-shot setting (Falcon-7B-Instruct at 0.02 and Llama-2-7B-Chat at 0.00),
fine-tuning significantly improves this capability (Falcon-7B-Instruct at 0.65 and Llama-2-7B-Chat at 0.99). Results
suggest a sweet spot in balancing overall performance with the ability to abstain using ordinary training regimes.

6 DISCUSSION

6.1 The Viability and Implications of Laboratory-Scale AI.

Our work provides empirical support for the viability of adopting a “laboratory-scale” approach to AI that prioritizes
user autonomy, privacy, fairness, and transparency while maintaining much of the performance and usability offered by
industry-dominant corporate models.With a small GPU card, users can create domain-specific, chat-based languagemod-
els and deploy themwithout losing the general-purpose utility and interface that makes such technologies appealing. The
laboratory-scale approach intends to address, in a limited capacity, the challenges posed by scholars such as Bender et al.
[6], who highlight the dangers of training language models on poorly specified web scraped data generally unrelated to
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the tasks for which themodel will be used; Birhane et al. [8], who describe the performance-centric ”values encoded inma-
chine learning research,” and highlight the field’s capture by big tech companies; and Palmer et al. [46], who contend that
scientists and academic researchers must justify the use of proprietary, closed models over openmodels. Laboratory-scale
AI centers the domain-specific, responsible application of small, open models, presenting an option for scientists and pub-
lic interest technologists who have good reason to avoid closed models that cannot be accessed except via a call to an API.

6.2 Affordances and Challenges of Open Models.

We used the libraries and model ecosystem provided by HuggingFace [69]. The Supervised Fine-Tuning trainer class
provided by the TRL library made adapting open language models relatively simple, and primarily dependent on the
organization of our data. The Huggingface ecosystem also supports qLoRA [21], which made customizing quantized
models relatively straightforward. However, we nonetheless encountered difficulties with using open models that bear
discussion. The most intractable problem we encountered in fine-tuning our own models lay in the difficulty of obtaining
cloud instances equipped with even low-cost GPU hardware. We experienced consistent difficulties obtaining results due
to lack of available cloud resources. Moreover, we did not expect the quantized open models we tested to run so much
more slowly than the closed models we tested. This is related in part to our choice of a low-end GPU, but where inference
speed makes a difference, the evidence suggests that cost-efficient, laboratory-scale models still trail closed models.

Open models showed room for improvement on tasks related to responsible use and deployment. While results on
differentially private question answering show the potential for privacy-centering open models, they are impeded by
small batch sizes required to use low-cost hardware. Fine-tuning has mixed effects for abstention: where a model exhibits
strong question answering performance, it is less likely to abstain when it should; but when it exhibits weak question an-
swering performance, it more reliably abstains from answering a question when it should not. Results on the toxicity bias
task suggest that open models lag behind closed models on bias mitigation. Though tempting to conclude that the RLHF
process used by OpenAI is the right way to address this problem, we note that LLaMA-2-Chat-7B also undergoes RLHF
[60], and performs most poorly of any of the models we assess. Future research can contribute by centering these issues.

6.3 Limitations and Future Work.

While our work attempts to provide an open, low-cost approach, we acknowledge that open models have undergone ex-
pensive, resource intensive pretraining on large-scale, sometimes opaque datasets. While libraries like qLoRA help to en-
able adaptations of pretrainedmodels, they cannot equip us with ameans of circumventing pretraining, which at this time
remains the only reliable means of producing a fluent, general-purpose base model. Future work might explore alterna-
tives that change the pretraining paradigm.We also acknowledge that results from closedmodelsmay not be reproducible,
should OpenAI change or remove models from its API, potentially without notifying the end user. This is a limitation of
closed models that motivates our study, but also necessarily a limitation of our work. Finally, we could not reliably model
the carbon cost of closed models due to uncertainties about the exact hardware used to run these models, the location of
the data centers on which they run, and practices such as batching user inputs, which may allow for economies of scale.

7 CONCLUSION

We show that small, open, models are competitive with closed models, in that they are cost-efficient, responsive to user
data, and robust to fine-tuning. We analyze responsible use of lab-scale models, showing they offer benefits over closed
models, particularly in privacy and abstention. We contend that laboratory-scale AI can serve as a basis for future scien-
tific and public interest work, enabling practitioners to customize models without needing to rely on closed, API-based AI.
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